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Airbnb business analysis 

Introduction 

Airbnb is the number one platform for accommodation 
rentals in the United States (Similarweb, 2023), with more 
than 8.4 billion US dollars in worldwide revenue in 2022 
(Airbnb, 2023). This report will assess growth 
opportunities in New York with a 2019 public dataset. 
Through exploratory data analysis, machine learning, and 
visualisations along with analysis of relationships between 
location and price, the report proposes to answer the 
question:  

“Can we identify distinct areas for increased revenue 
potential?" 

Pre-processing 

The dataset consisted of 16 fields and 48,895 
observations. After the removal of listings with zero price 
or zero availability this reduced to 31,354. Missing values 
were replaced and there were no duplicates present. 

Exploratory Data Analysis (EDA) 

The dataset was explored through visualisations such as 
bar charts, box plots, distribution plots, correlation plots 
(heatmaps and pair plots), and data distributions overlaid 
on a map of New York. For our business question, the 
variables price and neighbourhood_group were of 
particular importance. Essential categorical variables 
were label encoded to prepare for clustering methods, 
numerical variables were standardised for an equal 
interpretation of features with different magnitudes and 
distributions. The skewness and spread of the variables 
were investigated, and variables were log-transformed 
were necessary. 

Price alone was found to not be a good indicator for 
revenue because of the large variation in room availability. 
Therefore, a new variable revenue_opportunity was 
created to show the maximum commission that Airbnb 
could make on each room assuming it was booked every 
day it is available at 17% commission (Airbnb, 2020). 
Manhattan has the highest revenue opportunity by some 
margin, followed by Brooklyn, then Queens. This variable 
was log-transformed to normalise the distribution. 
revenue_opportunity by neighbourhood_group 
and the log distribution are shown in figure 1. 

 
Figure 1. Revenue opportunity 

 

Using the number of people living in each neighbourhood 
group (United States Census Bureau, 2023), the number 
of listings per resident was calculated (figure 2). This 

shows that Manhattan has the highest proportion of 
listings per resident. 

Figure 2. Proportion of listings per resident 

Using the mean revenue_opportunity for each 
neighbourhood_group, the potential additional 
revenue for each group was calculated assuming they 
could all be raised to the same level as Manhattan; 
0.00832 listings per resident. If all groups could be 
increased to the same level as Manhattan, Queens has 
the highest additional revenue opportunity (figure 3). 

 

Figure 3. Potential revenue increase if all groups have 
the same ratio as Manhattan 

Various clustering models were built using k-prototype 
because it performs well with numerical and categorical 
values, k-means when using only numerical variables, and 
DBSCAN because it performs well with outliers. A 
DBSCAN model using log_revenue_opportunity, 
room_type, and neighbourhood_group provided 
some useful results (figure 4). It only achieved a silhouette 
score of 0.144, which is relatively low. However, the 
clusters can be seen to be meaningful with each 
containing a single neighbourhood_group and 
room_type - except cluster -1 with 43 outliers from 
across all categories which were effectively dropped. 

 

Figure 4. DBSCAN Clustering 
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price, revenue_opportuniy (figure 5), and 
availability_365 were compared between the 
clusters. Focusing on Queens, as the highest additional 
revenue opportunity, shows that ‘Private room’ (cluster 5) 
has good availability but low price and low revenue 
opportunity. ‘Entire home/apt’ (cluster 8) has good 
availability, high price, and high revenue opportunity. 
‘Shared room’ (cluster 11) has very low price, high 
availability but low revenue opportunity. Comparing 
neighbourhood_group clusters, ‘Entire home/appt’ 
listings in Queens have a lower price than Manhattan and 
Brooklyn, but availability is similar to Manhattan and 
higher than Brooklyn, making the revenue opportunity for 
these types of listings comparable to Brooklyn, although 
still lower than Manhattan. So based upon all those 
factors, a focus for Airbnb could be increasing the number 
of ‘Entire home/appt’ listings in Queens. 

 

Figure 5. Revenue opportunity distribution per cluster 

Linear regression was used to try to predict the revenue 
opportunity in Queens based on location, using the three 
Queens clusters previously generated (figure 6). 

Neither longitude nor latitude gave a reliable prediction for 
revenue. There was, however, a weak correlation between 
both longitude and latitude with revenue_opportunity, 
trending slightly higher with a higher longitude and with a 
lower latitude. This suggests revenue_opportunity is 
slightly higher further West and South in Queens. As 
already stated, the correlation was weak and could not be 
used to predict revenues so the prediction results are not 
included here. 

 

Figure 6. Linear Regression 

A k-means model was built on revenue_opportunity 
using the Queens neighbourhood_group; clusters 5, 8, 
and 11 from the DBSCAN, with four clusters as a 
compromise between the silhouette and elbow methods 
(figure 7). The silhouette score was 0.525 which is 
considered a good level of cohesion. Looking at the mean 

values of revenue_opportunity, latitude, and 
longitude for each cluster (figure 8) shows mean 
revenue_opportunity increasing with lower latitude 
and higher longitude, which supports the weak findings 
from the linear regression that revenue_opportunity 
increases further South and West in Queens.  

 

Figure 7. K-means silhouette and elbow 

 

Figure 8. Mean latitude and longitude per cluster 

Limitations 

The analysis and report are limited to the provided data 
with the addition of population data. A more 
comprehensive and detailed analysis could have been 
performed with the inclusion of additional fields in the 
listings such as detailed room information (number of 
bedrooms, bathrooms), detailed host information 
(enrolment in the database, response time), short-term 
and long-term availability (from 30 days to 90 days), host 
acceptance rates, review accuracy, cleanliness, and 
square metres. Also, the provision of additional datasets 
such as detailed calendar data (information for specific 
date ranges, including availability, price, and minimum 
overall stay allowed) would allow a time series analysis 
and detailed review of data, including exploring the 
frequency of commonly used words for sentiment 
analysis. Such information is publicly available 
(insideairbnb, 2023). 

Conclusion and Recommendations 

This report has identified a distinct area of potential 
increased revenue for Airbnb in New York, namely 
Queens. This was managed through data analysis and 
applying machine learning techniques such as clustering.  

The recommendations are therefore that Airbnb invests its 
resources there with a particular focus on ‘Entire 
home/apt’ listings due to the promising returns these types 
of listings can offer, leading to a considerable increase in 
revenue.  

Finally, to gain a deeper understanding of the differences 
between these neighbourhoods, Airbnb can pay attention 
to answering the following question: Why is Queens 
currently relatively underpopulated in terms of Airbnb?  

 Word count: 1,061 
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Appendix: Exploratory Data Analysis on 
AB_NYC_2019 dataset 
PLEASE NOTE: 

This notebook contains only the code that is required for the charts, tables, and 
visualisations presented in the Airbnb business analysis report. The complete 
EDA and thought process can be found in the full notebook. 

Import Libraries 
In [65]: 

%pip install kmodes 

In [66]: 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.image as mpimg 
import seaborn as sns 
import scipy.stats as st 
from sklearn import linear_model 
from sklearn.cluster import KMeans 
from sklearn.cluster import DBSCAN 
from sklearn.metrics import r2_score 
from sklearn.metrics import silhouette_score 
from kmodes.kprototypes import KPrototypes 
from sklearn.neighbors import NearestNeighbors 
from sklearn.preprocessing import LabelEncoder, StandardScaler 
import warnings 
# ignore future deprecation 
warnings.filterwarnings('ignore') 

Read the AB_NYC_2019.csv file 

In [67]: 
airbnb = pd.read_csv("AB_NYC_2019.csv") 

There are a lot of missing variables, especially last_review and reviews_per_month. 

Replace null values with appropriate values: 

• name is categorical so will simply be replaced with "Replaced name" 
• host_name is categorical so will simply be replaced with "Replaced host name" 
• last_review is date so will be replaced with 0 (0 is not ideal for dates but we won't be using this 

variable, null value is replaced to avoid any errors) 
• review_per_month is a continuous variable so will be replaced with 0 

In [68]: 
airbnb['name'].fillna('Replaced name', inplace=True) 
airbnb['host_name'].fillna('Replaced host name', inplace=True) 
airbnb['last_review'].fillna(0, inplace=True) 
airbnb['reviews_per_month'].fillna(0, inplace=True) 

In [69]: 
airbnb.drop(airbnb[airbnb.price == 0].index, inplace=True) 
airbnb.drop(airbnb[airbnb.availability_365 == 0].index, inplace=True) 
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Log transform price to normalise the distribution 

In [70]: 
airbnb['log_price'] = np.log(airbnb['price']) 

Price is the charge per night which isn't a particularly helpful figure for Airbnb on its own. 

We will therefore calculate the total revenue opportuity to Airbnb for each room if it were to be booked for 
every day that it is available. This is of course unlikely, but it is a useful comparrison as to the potential 
maximum revenue of each room. The commission for each room is 17% of the price charged, made-up of 3% 
host fee and 14% guest fee: https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-
charge-hosts-288 

Revenue_opportunity = price availability_365 0.17 

In [71]: 
airbnb['revenue_opportunity'] = airbnb['price'] * airbnb['availability_365'] * 
0.17 

Also log transform revenue_opportunity 

In [72]: 
airbnb['log_revenue_opportunity'] = np.log(airbnb['revenue_opportunity']) 

Figure 1. Revenue opportunity 

In [73]: 
plt.hist(airbnb['log_revenue_opportunity'], bins=30) 
plt.xlabel('Log Revenue Opportunity') 
plt.ylabel('Frequency') 
plt.title('Distribution of Log Revenue Opportunity') 
plt.show() 

 
In [74]: 

neighbourhood_group = airbnb.pivot_table(index ='neighbourhood_group',values = 
'revenue_opportunity', aggfunc = np.sum) 

https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288
https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288
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neighbourhood_group.plot(kind = 'bar') 
plt.xlabel('Neighbourhood group') 
plt.ylabel('Revenue opportunity @ 17% commission') 

Out[74]: 
Text(0, 0.5, 'Revenue opportunity @ 17% commission') 

 

Figure 2. Proportion of listings per resident 

In [75]: 
# Create new dataframe, .reset_index() to convert series into dataframe 
counts_df = airbnb.neighbourhood_group.value_counts().reset_index() 
counts_df.columns = ['Neighbourhood Group', 'Listings'] 
 
# Create population dict from cencus data 
population_dict = { 
    'Manhattan': 1.629e6, 
    'Brooklyn': 2.577e6, 
    'Queens': 2.271e6, 
    'Bronx': 1.476e6, 
    'Staten Island': 476e3 
} 
 
# Add population column to df 
counts_df['Population'] = counts_df['Neighbourhood 
Group'].map(population_dict).apply(lambda x: int(x)) 
 
# Add listings per resident to df 
counts_df['Listings per Resident'] = (counts_df['Listings'] / 
counts_df['Population']).round(5) 
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counts_df 

Out[75]: 

 
Neighbourhood Group Listings Population Listings per Resident 

0 Manhattan 13559 1629000 0.00832 

1 Brooklyn 12253 2577000 0.00475 

2 Queens 4298 2271000 0.00189 

3 Bronx 913 1476000 0.00062 

4 Staten Island 331 476000 0.00070 

In [76]: 
styled_df = counts_df.style.background_gradient( 
    cmap='Blues' 
).hide_index().format( 
    { 
        "Listings": "{:,.0f}",  
        "Population": "{:,.0f}", 
        "Listings per Resident": "{:.5g}" 
    } 
).set_table_styles( 
    [ 
        { 
            'selector': 'th', 
            'props': [ 
                ('padding', '1px'), 
                ('text-align', 'left') 
            ] 
        }, 
        { 
            'selector': 'td', 
            'props': [ 
                ('padding', '1px'), 
                ('text-align', 'center') 
            ] 
        } 
    ] 
).set_properties(**{'width': '70px'}) 
 
styled_df 

Out[76]: 
Neighbourhood 
Group Listings Population Listings per 

Resident 

Manhattan 13,559 1,629,000 0.00832 

Brooklyn 12,253 2,577,000 0.00475 

Queens 4,298 2,271,000 0.00189 

Bronx 913 1,476,000 0.00062 

Staten Island 331 476,000 0.0007 
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Figure 3. Potential revenue increase if all groups have the same ratio as 
Manhattan 

In [77]: 
mean_revenue_dict = 
airbnb.groupby('neighbourhood_group')['revenue_opportunity'].mean().to_dict() 
mean_revenue_dict 
 
revenue_opportunity_dict = airbnb.pivot_table(index='neighbourhood_group', 
values='revenue_opportunity', aggfunc=np.sum).to_dict()['revenue_opportunity'] 
revenue_opportunity_dict 

Out[77]: 
{'Bronx': 2872252.1700000004, 
 'Brooklyn': 47567733.830000006, 
 'Manhattan': 97984186.9, 
 'Queens': 14702861.91, 
 'Staten Island': 1541384.73} 

In [78]: 
table_2 = pd.DataFrame() 
 
# Build columns 
table_2['Neighbourhood Group'] = counts_df['Neighbourhood Group'] 
table_2['Listings * 0.00832'] = counts_df['Population'] * 0.00832 
table_2['Mean Revenue'] = table_2['Neighbourhood Group'].map(mean_revenue_dict) 
table_2['Current Revenue Opportunity'] = table_2['Neighbourhood 
Group'].map(revenue_opportunity_dict) 
table_2['Potential Revenue * 0.00832'] = table_2['Mean Revenue'] * 
table_2['Listings * 0.00832'] 
 
# Hardcode Manhattan back since that is the baseline and rounding changes the 
value 
table_2.loc[table_2['Neighbourhood Group'] == 'Manhattan', 'Potential Revenue * 
0.00832'] = 97984186.9 
 
table_2['Potential Revenue Increase'] = table_2['Potential Revenue * 0.00832'] - 
table_2['Current Revenue Opportunity'] 
 
table_2 

Out[78]: 

 
Neighbourhood 

Group 
Listings * 

0.00832 
Mean 

Revenue 
Current Revenue 

Opportunity 
Potential Revenue * 

0.00832 
Potential Revenue 

Increase 

0 Manhattan 13553.28 7226.505413 97984186.90 9.798419e+07 0.000000e+00 

1 Brooklyn 21440.64 3882.129587 47567733.83 8.323534e+07 3.566761e+07 

2 Queens 18894.72 3420.861310 14702861.91 6.463622e+07 4.993335e+07 

3 Bronx 12280.32 3145.949803 2872252.17 3.863327e+07 3.576102e+07 

4 Staten Island 3960.32 4656.751450 1541384.73 1.844223e+07 1.690084e+07 

In [79]: 
# Currency format func 
def format_currency_in_millions(value): 
    return "$ {:.1f}M".format(value / 1_000_000) 
 
# format 
styled_table_2 = table_2.style.format({ 
    'Listings * 0.00832': "{:,.0f}", 
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    'Mean Revenue': "$ {:,.0f}", 
    'Current Revenue Opportunity': format_currency_in_millions, 
    'Potential Revenue * 0.00832': format_currency_in_millions, 
    'Potential Revenue Increase': format_currency_in_millions 
}).background_gradient(cmap='Blues', subset=['Listings * 0.00832', 'Mean Revenue', 
'Current Revenue Opportunity', 'Potential Revenue * 0.00832', 'Potential Revenue 
Increase']).hide_index().set_table_styles([ 
   { 
      'selector': 'th', 
      'props': [ 
          ('padding', '1px'), 
          ('text-align', 'left') 
      ] 
   },  
   { 
      'selector': 'td', 
      'props': [('padding', '1px'), 
        ('text-align', 'center')] 
   }, 
]).set_properties(**{'width': '60px'}) 
 
styled_table_2 

Out[79]: 
Neighbourhood 
Group 

Listings * 
0.00832 

Mean 
Revenue 

Current 
Revenue 
Opportunity 

Potential 
Revenue * 
0.00832 

Potential 
Revenue 
Increase 

Manhattan 13,553 $ 7,227 $ 98.0M $ 98.0M $ 0.0M 

Brooklyn 21,441 $ 3,882 $ 47.6M $ 83.2M $ 35.7M 

Queens 18,895 $ 3,421 $ 14.7M $ 64.6M $ 49.9M 

Bronx 12,280 $ 3,146 $ 2.9M $ 38.6M $ 35.8M 

Staten Island 3,960 $ 4,657 $ 1.5M $ 18.4M $ 16.9M 

Figure 4. DBSCAN Clustering 

In [80]: 
# keeping less than we're dropping so just picking those features 
cluster_data = airbnb[['price', 'log_price', 'neighbourhood_group', 'latitude', 
'longitude', 'room_type', 'revenue_opportunity', 'log_revenue_opportunity', 
'availability_365']] 
cluster_data 
 
# Create a copy of the data  
cluster_data_prepared = cluster_data.copy() 
 
# Encode categorical variables 
le = LabelEncoder() 
cluster_data_prepared['room_type_xform'] = 
le.fit_transform(cluster_data['room_type']) 
cluster_data_prepared['neighbourhood_group_xform'] = 
le.fit_transform(cluster_data['neighbourhood_group']) 

In [81]: 
dbscan=DBSCAN(eps=0.9,min_samples=9) 
dbscan.fit(cluster_data_prepared[['log_revenue_opportunity','room_type_xform','nei
ghbourhood_group_xform']]) 

Out[81]: 
DBSCAN 
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DBSCAN(eps=0.9, min_samples=9) 

In [82]: 
cluster_data_prepared['DBSCAN_labels']=dbscan.labels_  
plt.figure(figsize=(10,10)) 
plt.scatter(cluster_data_prepared['log_revenue_opportunity'],cluster_data_prepared
['room_type_xform'],cluster_data_prepared['neighbourhood_group_xform'],c=cluster_d
ata_prepared['DBSCAN_labels']) 
plt.title('DBSCAN Clustering',fontsize=20) 
plt.xlabel('Feature 1',fontsize=14) 
plt.ylabel('Feature 2',fontsize=14) 
plt.show() 

 
In [83]: 

plt.figure(figsize=(12,8)) 
plt.style.use('fast') 
# Set the boundary of the map using longitude and latitude obtained from Google 
Maps 
coordinates = (-74.2623, -73.6862, 40.4943, 40.9144) 
map = mpimg.imread("New_York_City.jpg") 
plt.imshow(map,extent=coordinates) 
groups = cluster_data_prepared.groupby('DBSCAN_labels') 
for name,group in groups : 
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     plt.scatter(group['longitude'],group['latitude'], label=name, 
edgecolors='black') 
plt.xlabel('Longitude') 
plt.ylabel('Latitude') 
plt.title('Properties by cluster') 
plt.legend() 

Out[83]: 
<matplotlib.legend.Legend at 0x1437fbbb0> 

 
plot queens here since this is used for the LR in figure 6 

In [84]: 
plt.figure(figsize=(12,8)) 
plt.style.use('fast') 
# Set the boundary of the map using longitude and latitude obtained from Google 
Maps 
coordinates = (-74.2623, -73.6862, 40.4943, 40.9144) 
map = mpimg.imread("New_York_City.jpg") 
plt.imshow(map,extent=coordinates) 
Queens = cluster_data_prepared[(cluster_data_prepared['DBSCAN_labels'] == 5) | 
(cluster_data_prepared['DBSCAN_labels'] == 8) | 
(cluster_data_prepared['DBSCAN_labels'] == 11)] 
groups = Queens.groupby('DBSCAN_labels') 
for name,group in groups : 
     plt.scatter(group['longitude'],group['latitude'], label=name, 
edgecolors='black') 
plt.xlabel('Longitude') 
plt.ylabel('Latitude') 
plt.title('Properties by cluster') 
plt.legend() 

Out[84]: 
<matplotlib.legend.Legend at 0x143594910> 
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Figure 5. Revenue opportunity distribution per cluster 

In [85]: 
plt.figure(figsize=(12, 8)) 
sns.boxplot(x='DBSCAN_labels', y='revenue_opportunity', 
data=cluster_data_prepared) 
plt.title('Revenue opportunity Distribution per Cluster') 
plt.axis(ymin=0, ymax=15000) 
plt.show() 
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Figure 6. Linear Regression 

In [86]: 
msk=np.random.rand(len(Queens))<0.8 
train=Queens[msk] 
test=Queens[~msk] 

Using sklearn package for data modelling 

longitude 

In [87]: 
regr=linear_model.LinearRegression() 
train_x=np.asanyarray(train[['longitude']]) 
train_y=np.asanyarray(train[['log_revenue_opportunity']]) 
 
regr.fit(train_x, train_y) 
# The coefficients 
print('Coefficients:', regr.coef_) 
print('Intercept:', regr.intercept_) 

Coefficients: [[1.84684823]] 
Intercept: [143.86871794] 

In [88]: 
# Plot outputs 
plt.scatter(train.longitude,train.log_revenue_opportunity,color='blue') 
plt.plot(train_x,regr.coef_[0][0]*train_x + regr.intercept_[0],'-r') 
plt.xlabel("Longitude") 
plt.ylabel("Log revenue opportunity") 

Out[88]: 
Text(0, 0.5, 'Log revenue opportunity') 
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latitude 

In [89]: 
regr=linear_model.LinearRegression() 
train_x=np.asanyarray(train[['latitude']]) 
train_y=np.asanyarray(train[['log_revenue_opportunity']]) 
 
regr.fit(train_x, train_y) 
# The coefficients 
print('Coefficients:', regr.coef_) 
print('Intercept:', regr.intercept_) 

Coefficients: [[-3.08822326]] 
Intercept: [133.22685362] 

In [90]: 
# Plot outputs 
plt.scatter(train.latitude,train.log_revenue_opportunity,color='blue') 
plt.plot(train_x,regr.coef_[0][0]*train_x + regr.intercept_[0],'-r') 
plt.xlabel("Latitude") 
plt.ylabel("Log revenue opportunity") 

Out[90]: 
Text(0, 0.5, 'Log revenue opportunity') 



Page 15 

 

Figure 7. K-means silhouette and elbow 

In [91]: 
# create reduced dataframe 
kmeans_run = Queens[['log_revenue_opportunity']] 
kmeans_run 

Out[91]: 

 
log_revenue_opportunity 

46 8.466216 

77 8.257282 

143 3.169686 

161 7.433773 

181 9.985874 

... ... 

48858 8.339195 

48863 5.399700 

48866 7.357390 

48878 7.182200 

48889 7.496181 

4288 rows × 1 columns 

Standardise (not really required with one variable, but still normalising for consistency) 
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In [92]: 
# standardise numeric variables 
scaler = StandardScaler() 
kmeans_run[['log_revenue_opportunity']] = 
scaler.fit_transform(kmeans_run[['log_revenue_opportunity']]) 

In [93]: 
k_values = [] 
sil_scores = [] 
sq_distances = [] 
 
for i in range(2,13): 
    # Initialize KMeans algorithm 
    # 12 times per run to find the optimal centroids 
    # random_state to ensure the same clusters every time we run this 
    kmeans = KMeans(n_clusters=i, init='k-means++', n_init=12, random_state=0) 
 
    # Fit and predict clusters 
    clusters = kmeans.fit_predict(kmeans_run)  
 
    # Compute silhouette score 
    SScore = silhouette_score(kmeans_run, clusters, metric='euclidean') 
 
    # Append to the lists 
    k_values.append(i) 
    sil_scores.append(SScore) 
    sq_distances.append(kmeans.inertia_)  # Sum of squared distances to closest 
centroid 
 
    print("Silhouette score for k (clusters) = " + str(i) + " is " + str(SScore)) 
 
# Plot silhouette scores 
plt.figure(figsize=(10,5)) 
plt.subplot(1, 2, 1) 
plt.plot(k_values, sil_scores, 'bx-') 
plt.xlabel('k (number of clusters)') 
plt.ylabel('Silhouette Score') 
plt.title('Silhouette Score vs Number of Clusters') 
 
# Plot sum of squared distances (for the elbow plot) 
plt.subplot(1, 2, 2) 
plt.plot(k_values, sq_distances, 'bx-') 
plt.xlabel('k (number of clusters)') 
plt.ylabel('Sum of Squared Distances') 
plt.title('Elbow Plot (Sum of Squared Distances vs Number of Clusters)') 
 
plt.tight_layout() 
plt.show() 

Silhouette score for k (clusters) = 2 is 0.5893624681654775 
Silhouette score for k (clusters) = 3 is 0.530886924845948 
Silhouette score for k (clusters) = 4 is 0.5254176792839207 
Silhouette score for k (clusters) = 5 is 0.5194508357370409 
Silhouette score for k (clusters) = 6 is 0.523834365832839 
Silhouette score for k (clusters) = 7 is 0.5218336849536875 
Silhouette score for k (clusters) = 8 is 0.5247260216642161 
Silhouette score for k (clusters) = 9 is 0.5235383488660361 
Silhouette score for k (clusters) = 10 is 0.5270604910271481 
Silhouette score for k (clusters) = 11 is 0.5278831498609623 
Silhouette score for k (clusters) = 12 is 0.5300666182194343 
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In [94]: 

# Initialize KMeans algorithm 
# 12 times per run to find the optimal centroids 
# random_state to ensure the same clusters every time we run this 
kmeans_optimal = KMeans(n_clusters=4, init='k-means++', n_init=12, random_state=0) 
 
# Fit and predict clusters 
clusters_optimal = kmeans_optimal.fit_predict(kmeans_run)  

In [95]: 
kmeans_run['cluster'] = clusters_optimal 
kmeans_run 

Out[95]: 

 
log_revenue_opportunity cluster 

46 0.753796 3 

77 0.600156 0 

143 -3.141014 2 

161 -0.005412 0 

181 1.871278 3 

... ... ... 

48858 0.660391 3 

48863 -1.501170 1 

48866 -0.061580 0 

48878 -0.190406 0 

48889 0.040480 0 

4288 rows × 2 columns 

Place original lat & long back so the results can be plotted on the map 

In [96]: 
kmeans_run['latitude'] = Queens[['latitude']] 
kmeans_run['longitude'] = Queens[['longitude']] 

In [97]: 
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plt.figure(figsize=(12,8)) 
plt.style.use('fast') 
 
# Set the boundary of the map using longitude and latitude obtained from Google 
Maps 
coordinates = (-74.2623, -73.6862, 40.4943, 40.9144) 
 
map = mpimg.imread("New_York_City.jpg") 
plt.imshow(map,extent=coordinates) 
 
# Group by cluster labels instead of neighbourhood group 
clusters = kmeans_run.groupby('cluster') 
 
# Loop through each cluster and plot the listings in it 
for name, group in clusters: 
    plt.scatter(group['longitude'], group['latitude'], label=name, 
edgecolors='black') 
 
plt.xlabel('Longitude') 
plt.ylabel('Latitude') 
plt.title('Properties by Cluster') 
plt.legend() 

Out[97]: 
<matplotlib.legend.Legend at 0x286dc6b30> 

 

Figure 8. Mean latitude and longitude per cluster 

In [98]: 
latitude_mean = kmeans_run.groupby('cluster')['latitude'].mean() 
print(latitude_mean) 
 
longitude_mean = kmeans_run.groupby('cluster')['longitude'].mean() 
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print(longitude_mean) 
 
log_rev_opp__mean = 
kmeans_run.groupby('cluster')['log_revenue_opportunity'].mean() 
print(log_rev_opp__mean) 

cluster 
0    40.726851 
1    40.731542 
2    40.739832 
3    40.725164 
Name: latitude, dtype: float64 
cluster 
0   -73.862784 
1   -73.867199 
2   -73.886560 
3   -73.863788 
Name: longitude, dtype: float64 
cluster 
0    0.171818 
1   -0.843104 
2   -2.629761 
3    1.033938 
Name: log_revenue_opportunity, dtype: float64 

In [99]: 
# Convert series to df 
kmeans_queens = log_rev_opp__mean.reset_index() 
 
# Merge the mean latitude and longitude with the original DataFrame 
kmeans_queens = kmeans_queens.merge(latitude_mean, on='cluster', how='left') 
kmeans_queens = kmeans_queens.merge(longitude_mean, on='cluster', how='left') 
 
# Rename columns 
kmeans_queens.columns = ['cluster', 'Mean Log Rev Opp', 'Mean Latitude', 'Mean 
Longitude'] 
kmeans_queens = kmeans_queens.sort_values(by=['Mean Log Rev Opp']) 
 
kmeans_queens 

Out[99]: 

 
cluster Mean Log Rev Opp Mean Latitude Mean Longitude 

2 2 -2.629761 40.739832 -73.886560 

1 1 -0.843104 40.731542 -73.867199 

0 0 0.171818 40.726851 -73.862784 

3 3 1.033938 40.725164 -73.863788 

In [100]: 
styled_df = kmeans_queens.style.background_gradient( 
    cmap='Blues', subset=['Mean Log Rev Opp', 'Mean Latitude', 'Mean Longitude'] 
).hide_index().set_table_styles( 
    [ 
        { 
            'selector': 'th', 
            'props': [ 
                ('padding', '1px'), 
                ('text-align', 'left') 
            ] 
        }, 



Page 20 

        { 
            'selector': 'td', 
            'props': [ 
                ('padding', '1px'), 
                ('text-align', 'center') 
            ] 
        } 
    ] 
).set_properties(**{'width': '70px'}) 
 
styled_df 

Out[100]: 
cluster Mean Log 

Rev Opp 
Mean 
Latitude 

Mean 
Longitude 

2 -2.629761 40.739832 -73.886560 

1 -0.843104 40.731542 -73.867199 

0 0.171818 40.726851 -73.862784 

3 1.033938 40.725164 -73.863788 
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